CONTOH SOAL
Suku banyak berderajad 3, jika dibagi $\left( {{x^2} + 2x - 3} \right)$ bersisa $\left( {3x - 4} \right)$, jika dibagi $\left( {{x^2} - x - 2} \right)$ bersisa $\left( {2x + 3} \right)$. Suku banyak tersebut adalah ....
- ${x^3} - {x^2} - 2x - 1$
- ${x^3} + {x^2} - 2x - 1$
- ${x^3} + {x^2} + 2x - 1$
- ${x^3} + 2{x^2} - x - 1$
- ${x^3} + 2{x^2} + x + 1$
Penyelesaian:
(CARA BIASA)
Misal:
- $P\left( x \right)$ adalah suku banyak berderajat $3$.
- $Q\left( x \right)$ adalah hasil pembagian.
Suku banyak berderajad 3, dibagi $\left( {{x^2} + 2x - 3} \right)$ bersisa $\left( {3x - 4} \right)$ artinya:
$\begin{array}{l}
P\left( x \right) = \left( {{x^2} + 2x - 3} \right).Q\left( x \right) + \left( {3x - 4} \right)\\
\Leftrightarrow P\left( x \right) = \left( {x + 3} \right)\left( {x - 1} \right).Q\left( x \right) + \left( {3x - 4} \right)\\
\Leftrightarrow P\left( { - 3} \right) = \left( { - 3 + 3} \right)\left( { - 3 - 1} \right).Q\left( x \right) + \left( {3.\left( { - 3} \right) - 4} \right)\\
\Leftrightarrow P\left( { - 3} \right) = \left( 0 \right)\left( { - 4} \right).Q\left( x \right) + \left( { - 9 - 4} \right)\\
\Leftrightarrow P\left( { - 3} \right) = 0 + \left( { - 13} \right)\\
\therefore P\left( { - 3} \right) = - 13\\
P\left( x \right) = \left( {{x^2} + 2x - 3} \right).Q\left( x \right) + \left( {3x - 4} \right)\\
\Leftrightarrow P\left( x \right) = \left( {x + 3} \right)\left( {x - 1} \right).Q\left( x \right) + \left( {3x - 4} \right)\\
\Leftrightarrow P\left( 1 \right) = \left( {1 + 3} \right)\left( {1 - 1} \right).Q\left( x \right) + \left( {3.1 - 4} \right)\\
\Leftrightarrow P\left( 1 \right) = \left( 4 \right)\left( 0 \right).Q\left( x \right) + \left( {3 - 4} \right)\\
\Leftrightarrow P\left( 1 \right) = 0 + \left( { - 1} \right)\\
\therefore P\left( 1 \right) = - 1
\end{array}$
Suku banyak berderajad $3$, jika dibagi $\left( {{x^2} - x - 2} \right)$ bersisa $\left( {2x + 3} \right)$ artinya:
$\begin{array}{l}
P\left( x \right) = \left( {{x^2} - x - 2} \right).Q\left( x \right) + \left( {2x + 3} \right)\\
\begin{array}{*{20}{c}}
{Misal:}&{Q\left( x \right)}
\end{array} = ax + b\\
\Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\
\Leftrightarrow P\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\
P\left( { - 3} \right) = \left( { - 3 - 2} \right)\left( { - 3 + 1} \right).\left( {a\left( { - 3} \right) + b} \right) + \left( {2\left( { - 3} \right) + 3} \right)\\
\Leftrightarrow P\left( { - 3} \right) = \left( { - 5} \right)\left( { - 2} \right).\left( { - 3a + b} \right) + \left( { - 6 + 3} \right)\\
\Leftrightarrow P\left( { - 3} \right) = 10.\left( { - 3a + b} \right) + \left( { - 3} \right)\\
\Leftrightarrow P\left( { - 3} \right) = - 30a + 10b - 3\\
\Leftrightarrow - 13 + 3 = - 30a + 10b\\
\Leftrightarrow - 30a + 10b = - 10\left( {\begin{array}{*{20}{c}}
{dibagi}&{ - 10}
\end{array}} \right)\\
\Leftrightarrow 3a - b = 1 \cdots \left( {\begin{array}{*{20}{c}}
{Persamaan}&1
\end{array}} \right)\\
P\left( 1 \right) = \left( {1 - 2} \right)\left( {1 + 1} \right).\left( {a\left( 1 \right) + b} \right) + \left( {2\left( 1 \right) + 3} \right)\\
\Leftrightarrow P\left( 1 \right) = \left( { - 1} \right)\left( 2 \right).\left( {a + b} \right) + \left( {2 + 3} \right)\\
\Leftrightarrow P\left( 1 \right) = - 2.\left( {a + b} \right) + 5\\
\Leftrightarrow P\left( 1 \right) = - 2a - 2b + 5\\
\Leftrightarrow - 1 - 5 = - 2a - 2b\\
\Leftrightarrow - 2a - 2b = - 6\left( {\begin{array}{*{20}{c}}
{dibagi}&{ - 2}
\end{array}} \right)\\
\Leftrightarrow a + b = 3 \cdots \left( {\begin{array}{*{20}{c}}
{Persamaan}&2
\end{array}} \right)
\end{array}$
Eliminasi Persamaan (1) dan (2) diperoleh:
$\begin{array}{l}
\left( 1 \right)3a - b = 1\\
\left( 2 \right)\underline {a + b = 3} \left( + \right)\\
\Leftrightarrow 4a = 4\\
\Leftrightarrow a = \frac{4}{4} = 1
\end{array}$
Substitusi nilai $a=1$ ke persamaan (2) diperoleh:
$\begin{array}{l}
a + b = 3 \cdots \left( 2 \right)\\
\Leftrightarrow 1 + b = 3\\
\Leftrightarrow b = 3 - 1 = 2
\end{array}$
Dengan substitusi $a=1$ dan $b=2$ ke persamaan awal diperoleh:
$\begin{array}{l}
P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\
\Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {1.x + 2} \right) + \left( {2x + 3} \right)\\
\Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {x + 2} \right) + \left( {2x + 3} \right)\\
\Leftrightarrow P\left( x \right) = x\left( {{x^2} - x - 2} \right) + 2\left( {{x^2} - x - 2} \right) + \left( {2x + 3} \right)\\
\Leftrightarrow P\left( x \right) = {x^3} - {x^2} - 2x + 2{x^2} - 2x - 4 + 2x + 3\\
\Leftrightarrow P\left( x \right) = {x^3} + {x^2} - 2x - 1
\end{array}$
Jawaban yang benar adalah B
(CARA SUPER CEPAT)
Suku banyak berderajad 3, jika dibagi $\left( {{x^2} + 3x - 2} \right) = \left( {x + 3} \right)\left( {x - 1} \right)$ bersisa $\left( {3x - 4} \right)$ artinya:
$\begin{array}{l}
P\left( { - 3} \right) = 3.\left( { - 3} \right) - 4 = - 13\\
P\left( 1 \right) = 3.1 - 4 = - 1
\end{array}$
Misalkan kita pilih satu persamaan yaitu $P\left( 1 \right) = - 1$. Jika kita substitusikan $x = 1$ hasilnya adalah $-1$. Dari pilihan jawaban yang memenuhi hanya jawaban B saja.
mantap gan, terbabtu ane!!! hehehe
ReplyDeletejangan sok belajar deh, ini tuh pelajaran anak TK .. omah gua yang udah sekarat aja tau.. lu pada anak kuliahan ga ngerti apa-apa gimana indonesia maju.. tanda pangkat aja gak tau plisss baca lagi biukunya demi kemajuan bangsa kita #merdeka
ReplyDeleteMAS, ALAMAT TK YG SUDAH NGAJARIN POLINOMIAL DI MANA YA? SOALNYA SAYA BARU DAPAT ITU DI BANGKU SMA. KALAU BOLEH, SAYA MINTA ALAMATNYA ^^ BUAT SEKOLAHIN ADIK SAYA ^^ ARIGATOU~
Deleteanonymous diatas gua sok pinter, jangan diambil hati
ReplyDeleteUkk
ReplyDeleteTerimakasih
ReplyDeleteBermanfaat banget :) terimakasih
ReplyDeleteCaracepatny bermanfaat
ReplyDeletekalo satunya lagi bisa ga ?x"-x-2 ( 2x+3) .
ReplyDelete2022 :)
ReplyDelete