Skip to content Skip to sidebar Skip to footer

Menyelesaikan Soal Suku Banyak (Polinomial) dengan Cepat


CONTOH SOAL

Suku banyak berderajad 3, jika dibagi $\left( {{x^2} + 2x - 3} \right)$ bersisa $\left( {3x - 4} \right)$, jika dibagi $\left( {{x^2} - x - 2} \right)$ bersisa $\left( {2x + 3} \right)$. Suku banyak tersebut adalah ....

  1. ${x^3} - {x^2} - 2x - 1$
  2. ${x^3} + {x^2} - 2x - 1$
  3. ${x^3} + {x^2} + 2x - 1$
  4. ${x^3} + 2{x^2} - x - 1$
  5. ${x^3} + 2{x^2} + x + 1$

Penyelesaian:

(CARA BIASA)

Misal:

  • $P\left( x \right)$ adalah suku banyak berderajat $3$.
  • $Q\left( x \right)$ adalah hasil pembagian.

Suku banyak berderajad 3, dibagi $\left( {{x^2} + 2x - 3} \right)$ bersisa $\left( {3x - 4} \right)$ artinya:

$\begin{array}{l} P\left( x \right) = \left( {{x^2} + 2x - 3} \right).Q\left( x \right) + \left( {3x - 4} \right)\\ \Leftrightarrow P\left( x \right) = \left( {x + 3} \right)\left( {x - 1} \right).Q\left( x \right) + \left( {3x - 4} \right)\\ \Leftrightarrow P\left( { - 3} \right) = \left( { - 3 + 3} \right)\left( { - 3 - 1} \right).Q\left( x \right) + \left( {3.\left( { - 3} \right) - 4} \right)\\ \Leftrightarrow P\left( { - 3} \right) = \left( 0 \right)\left( { - 4} \right).Q\left( x \right) + \left( { - 9 - 4} \right)\\ \Leftrightarrow P\left( { - 3} \right) = 0 + \left( { - 13} \right)\\ \therefore P\left( { - 3} \right) = - 13\\ P\left( x \right) = \left( {{x^2} + 2x - 3} \right).Q\left( x \right) + \left( {3x - 4} \right)\\ \Leftrightarrow P\left( x \right) = \left( {x + 3} \right)\left( {x - 1} \right).Q\left( x \right) + \left( {3x - 4} \right)\\ \Leftrightarrow P\left( 1 \right) = \left( {1 + 3} \right)\left( {1 - 1} \right).Q\left( x \right) + \left( {3.1 - 4} \right)\\ \Leftrightarrow P\left( 1 \right) = \left( 4 \right)\left( 0 \right).Q\left( x \right) + \left( {3 - 4} \right)\\ \Leftrightarrow P\left( 1 \right) = 0 + \left( { - 1} \right)\\ \therefore P\left( 1 \right) = - 1 \end{array}$

Suku banyak berderajad $3$, jika dibagi $\left( {{x^2} - x - 2} \right)$ bersisa $\left( {2x + 3} \right)$ artinya:

$\begin{array}{l} P\left( x \right) = \left( {{x^2} - x - 2} \right).Q\left( x \right) + \left( {2x + 3} \right)\\ \begin{array}{*{20}{c}} {Misal:}&{Q\left( x \right)} \end{array} = ax + b\\ \Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\ \Leftrightarrow P\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\ P\left( { - 3} \right) = \left( { - 3 - 2} \right)\left( { - 3 + 1} \right).\left( {a\left( { - 3} \right) + b} \right) + \left( {2\left( { - 3} \right) + 3} \right)\\ \Leftrightarrow P\left( { - 3} \right) = \left( { - 5} \right)\left( { - 2} \right).\left( { - 3a + b} \right) + \left( { - 6 + 3} \right)\\ \Leftrightarrow P\left( { - 3} \right) = 10.\left( { - 3a + b} \right) + \left( { - 3} \right)\\ \Leftrightarrow P\left( { - 3} \right) = - 30a + 10b - 3\\ \Leftrightarrow - 13 + 3 = - 30a + 10b\\ \Leftrightarrow - 30a + 10b = - 10\left( {\begin{array}{*{20}{c}} {dibagi}&{ - 10} \end{array}} \right)\\ \Leftrightarrow 3a - b = 1 \cdots \left( {\begin{array}{*{20}{c}} {Persamaan}&1 \end{array}} \right)\\ P\left( 1 \right) = \left( {1 - 2} \right)\left( {1 + 1} \right).\left( {a\left( 1 \right) + b} \right) + \left( {2\left( 1 \right) + 3} \right)\\ \Leftrightarrow P\left( 1 \right) = \left( { - 1} \right)\left( 2 \right).\left( {a + b} \right) + \left( {2 + 3} \right)\\ \Leftrightarrow P\left( 1 \right) = - 2.\left( {a + b} \right) + 5\\ \Leftrightarrow P\left( 1 \right) = - 2a - 2b + 5\\ \Leftrightarrow - 1 - 5 = - 2a - 2b\\ \Leftrightarrow - 2a - 2b = - 6\left( {\begin{array}{*{20}{c}} {dibagi}&{ - 2} \end{array}} \right)\\ \Leftrightarrow a + b = 3 \cdots \left( {\begin{array}{*{20}{c}} {Persamaan}&2 \end{array}} \right) \end{array}$

Eliminasi Persamaan (1) dan (2) diperoleh:

$\begin{array}{l} \left( 1 \right)3a - b = 1\\ \left( 2 \right)\underline {a + b = 3} \left( + \right)\\ \Leftrightarrow 4a = 4\\ \Leftrightarrow a = \frac{4}{4} = 1 \end{array}$

Substitusi nilai $a=1$ ke persamaan (2) diperoleh:

$\begin{array}{l} a + b = 3 \cdots \left( 2 \right)\\ \Leftrightarrow 1 + b = 3\\ \Leftrightarrow b = 3 - 1 = 2 \end{array}$

Dengan substitusi $a=1$ dan $b=2$ ke persamaan awal diperoleh:

$\begin{array}{l} P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {ax + b} \right) + \left( {2x + 3} \right)\\ \Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {1.x + 2} \right) + \left( {2x + 3} \right)\\ \Leftrightarrow P\left( x \right) = \left( {{x^2} - x - 2} \right).\left( {x + 2} \right) + \left( {2x + 3} \right)\\ \Leftrightarrow P\left( x \right) = x\left( {{x^2} - x - 2} \right) + 2\left( {{x^2} - x - 2} \right) + \left( {2x + 3} \right)\\ \Leftrightarrow P\left( x \right) = {x^3} - {x^2} - 2x + 2{x^2} - 2x - 4 + 2x + 3\\ \Leftrightarrow P\left( x \right) = {x^3} + {x^2} - 2x - 1 \end{array}$

Jawaban yang benar adalah B


(CARA SUPER CEPAT)

Suku banyak berderajad 3, jika dibagi $\left( {{x^2} + 3x - 2} \right) = \left( {x + 3} \right)\left( {x - 1} \right)$ bersisa $\left( {3x - 4} \right)$ artinya:

$\begin{array}{l} P\left( { - 3} \right) = 3.\left( { - 3} \right) - 4 = - 13\\ P\left( 1 \right) = 3.1 - 4 = - 1 \end{array}$

Misalkan kita pilih satu persamaan yaitu $P\left( 1 \right) = - 1$. Jika kita substitusikan $x = 1$ hasilnya adalah $-1$. Dari pilihan jawaban yang memenuhi hanya jawaban B saja.

Previous
Prev Post
Next
Next Post
nurhamim86
nurhamim86 A Mathematics Teacher who also likes the IT world.

10 comments for "Menyelesaikan Soal Suku Banyak (Polinomial) dengan Cepat"

  1. mantap gan, terbabtu ane!!! hehehe

    ReplyDelete
  2. jangan sok belajar deh, ini tuh pelajaran anak TK .. omah gua yang udah sekarat aja tau.. lu pada anak kuliahan ga ngerti apa-apa gimana indonesia maju.. tanda pangkat aja gak tau plisss baca lagi biukunya demi kemajuan bangsa kita #merdeka
































    ReplyDelete
    Replies
    1. MAS, ALAMAT TK YG SUDAH NGAJARIN POLINOMIAL DI MANA YA? SOALNYA SAYA BARU DAPAT ITU DI BANGKU SMA. KALAU BOLEH, SAYA MINTA ALAMATNYA ^^ BUAT SEKOLAHIN ADIK SAYA ^^ ARIGATOU~

      Delete
  3. anonymous diatas gua sok pinter, jangan diambil hati

    ReplyDelete
  4. Bermanfaat banget :) terimakasih

    ReplyDelete
  5. kalo satunya lagi bisa ga ?x"-x-2 ( 2x+3) .

    ReplyDelete