Mencari Trigonometri Sudut Rangkap
sin(α + β) = sin α cos β + cos α sin β
sin 2α = sin(α + α) = sin α cos α + cos α sin α = 2 sin α cos α
cos 2α = 1 – 2 sin2
α
cos 2α = 2 cos2
α - 1
cos 2 α = cos2
α – sin2 α
Mencari sin 3α
sin 3α = sin(α + 2α) = sin α cos 2α + cos α sin 2α
= sin α . (1 – 2 sin2 α)
+ cos α . 2 sin α cos α
= sin α – 2 sin3 α + 2 sin
α . cos2 α
= sin α – 2 sin3 α + 2 sin
α . (1 – sin2 α)
= sin α – 2 sin3 α + 2 sin
α – 2 sin3 α
= 3 sin α – 4 sin3 α
Jadi sin 3α = 3 sin α – 4 sin3 α
Mencari cos 3α
cos(α + β) = cos α cos β - sin α sin β
cos 3α = cos(α + 2α) = cos α cos 2α - sin α sin 2α
= cos α . (2 cos2 α - 1)
- sin α . 2 sin α cos α
= 2 cos3 α – cos α – 2 sin2
α . cos α
= 2 cos3 α – cos α - (1 –
cos2 α). 2 cos α
= 2 cos3 α – cos α – 2 cos
α + 2 cos3 α
= 4 cos3 α – 3 sin α
Jadi cos 3α = 4 cos3 α – 3 sin α
\[\begin{array}{l}
\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} \\
\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} \\
\tan 3\alpha = \tan \left( {2\alpha + \alpha } \right) \\
\Leftrightarrow \tan 3\alpha = \frac{{\tan 2\alpha + \tan \alpha }}{{1 - \tan 2\alpha \tan \alpha }} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} + \tan \alpha }}{{1 - \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}\tan \alpha }} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} + \frac{{\tan \alpha \left( {1 - {{\tan }^2}\alpha } \right)}}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - {{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }} - \frac{{2{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha + \tan \alpha - {{\tan }^3}\alpha }}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - {{\tan }^2}\alpha - 2{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{3\tan \alpha - {{\tan }^3}\alpha }}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - 3{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{3\tan \alpha - {{\tan }^3}\alpha }}{{1 - 3{{\tan }^2}\alpha }} \\
\end{array}\]
\[\begin{array}{l}
\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} \\
\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} \\
\tan 3\alpha = \tan \left( {2\alpha + \alpha } \right) \\
\Leftrightarrow \tan 3\alpha = \frac{{\tan 2\alpha + \tan \alpha }}{{1 - \tan 2\alpha \tan \alpha }} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} + \tan \alpha }}{{1 - \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}\tan \alpha }} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} + \frac{{\tan \alpha \left( {1 - {{\tan }^2}\alpha } \right)}}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - {{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }} - \frac{{2{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{2\tan \alpha + \tan \alpha - {{\tan }^3}\alpha }}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - {{\tan }^2}\alpha - 2{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{\frac{{3\tan \alpha - {{\tan }^3}\alpha }}{{1 - {{\tan }^2}\alpha }}}}{{\frac{{1 - 3{{\tan }^2}\alpha }}{{1 - {{\tan }^2}\alpha }}}} \\
\Leftrightarrow \tan 3\alpha = \frac{{3\tan \alpha - {{\tan }^3}\alpha }}{{1 - 3{{\tan }^2}\alpha }} \\
\end{array}\]
Post a Comment for "Mencari Trigonometri Sudut Rangkap"
Mohon untuk memberikan komentar yang baik dan membangun