Skip to content Skip to sidebar Skip to footer

Rumus Trigonometri Dalam Kuadran



KUADRAN I (SUDUT ISTIMEWA)


JENIS TRIGONOMETRI BESAR SUDUT
${0^o}$ ${30^o}$ ${45^o}$ ${60^o}$ ${90^o}$
SIN $0$ $\frac{1}{2}$ $\frac{1}{2}\sqrt 2 $ $\frac{1}{2}\sqrt 3 $ $1$
COS $1$ $\frac{1}{2}\sqrt 3 $ $\frac{1}{2}\sqrt 2 $ $\frac{1}{2}$ $0$
TAN $0$ $\frac{1}{3}\sqrt 3 $ $1$ $\sqrt 3 $ $\infty $

  • $\sin \alpha = \cos \left( {{{90}^o} - \alpha } \right)$
  • $\cos \alpha = \sin \left( {{{90}^o} - \alpha } \right)$
  • $\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}$

KUADRAN II

  • $\sin \alpha = \sin \left( {{{180}^o} - \alpha } \right)$
  • $\cos \alpha = - \cos \left( {{{180}^o} - \alpha } \right)$
  • $\tan \alpha = - \tan \left( {{{180}^o} - \alpha } \right)$

KUADRAN III

  • $\sin \alpha = - \sin \left( {{{180}^o} + \alpha } \right)$
  • $\cos \alpha = - \cos \left( {{{180}^o} + \alpha } \right)$
  • $\tan \alpha = \tan \left( {{{180}^o} + \alpha } \right)$

KUADRAN IV

  • $\sin \alpha = - \sin \left( {{{360}^o} - \alpha } \right)$
  • $\cos \alpha = \cos \left( {{{360}^o} - \alpha } \right)$
  • $\tan \alpha = - \tan \left( {{{360}^o} - \alpha } \right)$
  • $\sin \left( { - \alpha } \right) = - \sin \alpha $
  • $\cos \left( { - \alpha } \right) = \cos \alpha $
  • $\tan \left( { - \alpha } \right) = - \tan \alpha $
Previous
Prev Post
Next
Next Post
nurhamim86
nurhamim86 A Mathematics Teacher who also likes the IT world.

Post a Comment for "Rumus Trigonometri Dalam Kuadran"