Rumus Trigonometri Dalam Kuadran
By nurhamim86
KUADRAN I (SUDUT ISTIMEWA)
JENIS TRIGONOMETRI |
BESAR SUDUT |
${0^o}$ |
${30^o}$ |
${45^o}$ |
${60^o}$ |
${90^o}$ |
SIN |
$0$ |
$\frac{1}{2}$ |
$\frac{1}{2}\sqrt 2 $ |
$\frac{1}{2}\sqrt 3 $ |
$1$ |
COS |
$1$ |
$\frac{1}{2}\sqrt 3 $ |
$\frac{1}{2}\sqrt 2 $ |
$\frac{1}{2}$ |
$0$ |
TAN |
$0$ |
$\frac{1}{3}\sqrt 3 $ |
$1$ |
$\sqrt 3 $ |
$\infty $ |
- $\sin \alpha = \cos \left( {{{90}^o} - \alpha } \right)$
- $\cos \alpha = \sin \left( {{{90}^o} - \alpha } \right)$
- $\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}$
KUADRAN II
- $\sin \alpha = \sin \left( {{{180}^o} - \alpha } \right)$
- $\cos \alpha = - \cos \left( {{{180}^o} - \alpha } \right)$
- $\tan \alpha = - \tan \left( {{{180}^o} - \alpha } \right)$
KUADRAN III
- $\sin \alpha = - \sin \left( {{{180}^o} + \alpha } \right)$
- $\cos \alpha = - \cos \left( {{{180}^o} + \alpha } \right)$
- $\tan \alpha = \tan \left( {{{180}^o} + \alpha } \right)$
KUADRAN IV
- $\sin \alpha = - \sin \left( {{{360}^o} - \alpha } \right)$
- $\cos \alpha = \cos \left( {{{360}^o} - \alpha } \right)$
- $\tan \alpha = - \tan \left( {{{360}^o} - \alpha } \right)$
- $\sin \left( { - \alpha } \right) = - \sin \alpha $
- $\cos \left( { - \alpha } \right) = \cos \alpha $
- $\tan \left( { - \alpha } \right) = - \tan \alpha $
nurhamim86
A Mathematics Teacher who also likes the IT world.
Post a Comment for "Rumus Trigonometri Dalam Kuadran"
Mohon untuk memberikan komentar yang baik dan membangun