Integral dengan Substitusi Trigonometri Part 1
Intergral bentuk $\int {\sqrt {{a^2} - {x^2}} } dx$
Untuk menyelesaikan integral di atas dapat dilakukan dengan pemisalan sebagai berikut
$x = a\sin \theta \Rightarrow dx = a\cos \theta d\theta $Dengan menyubtitusikan pemisalan tersebut diperoleh
$\begin{array}{*{20}{l}}{\int {\sqrt {{a^2} - {x^2}} } dx}\\{ = \int {\sqrt {{a^2} - {{\left( {a\sin \theta } \right)}^2}} } .a\cos \theta d\theta }\\{ = \int {\sqrt {{a^2} - {a^2}{{\sin }^2}\theta } } .a\cos \theta d\theta }\\{ = \int {a\sqrt {1 - {{\sin }^2}\theta } } .a\cos \theta d\theta }\\{ = {a^2}\int {\sqrt {{{\cos }^2}\theta } } \cos \theta d\theta }\\{ = {a^2}\int {\sqrt {{{\cos }^2}\theta } } \cos \theta d\theta }\\{ = {a^2}\int {\cos \theta } \cos \theta d\theta }\\{ = {a^2}\int {{{\cos }^2}\theta } d\theta }\\{ = {a^2}\int {\frac{1}{2}\left( {\cos 2\theta + 1} \right)} d\theta }\\{ = \frac{1}{2}{a^2}\int {\left( {\cos 2\theta + 1} \right)} d\theta }\\{ = \frac{1}{2}{a^2}\left[ {\frac{1}{2}\sin 2\theta + \theta } \right] + C}\\{ = \frac{1}{4}{a^2}\sin 2\theta + \frac{1}{2}{a^2}\theta + C}\\{ = \frac{1}{4}{a^2}.2\sin \theta \cos \theta + \frac{1}{2}{a^2}\theta + C}\\{ = \frac{1}{2}{a^2}\sin \theta \sqrt {1 - {{\sin }^2}\theta } + \frac{1}{2}{a^2}\theta + C}\end{array}$
Dari sini kembalikan variabel ke $x$
$\begin{array}{l}
x = a\sin \theta \Rightarrow \sin \theta = \frac{x}{a} \\
\sin \theta = \frac{x}{a} \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{x}{a}} \right) \\
\end{array}$
Diperoleh
$\begin{array}{l}
\frac{1}{2}{a^2}\sin \theta \sqrt {1 - {{\sin }^2}\theta } + \frac{1}{2}{a^2}\theta + C \\
= \frac{1}{2}{a^2}.\frac{x}{a}\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}ax\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}x\sqrt {{a^2}\left( {1 - {{\left( {\frac{x}{a}} \right)}^2}} \right)} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}x\sqrt {{a^2}\left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right)} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\int {\sqrt {{a^2} - {x^2}} } dx = \frac{1}{2}x\sqrt {{a^2} - {x^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\end{array}$
\frac{1}{2}{a^2}\sin \theta \sqrt {1 - {{\sin }^2}\theta } + \frac{1}{2}{a^2}\theta + C \\
= \frac{1}{2}{a^2}.\frac{x}{a}\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}ax\sqrt {1 - {{\left( {\frac{x}{a}} \right)}^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}x\sqrt {{a^2}\left( {1 - {{\left( {\frac{x}{a}} \right)}^2}} \right)} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
= \frac{1}{2}x\sqrt {{a^2}\left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right)} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\int {\sqrt {{a^2} - {x^2}} } dx = \frac{1}{2}x\sqrt {{a^2} - {x^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\end{array}$
KESIMPULAN
\[\int {\sqrt {{a^2} - {x^2}} } dx = \frac{1}{2}x\sqrt {{a^2} - {x^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C\]
CONTOH SOAL
Tentukan hasil dari
$\int {\sqrt {4 - {x^2}} } dx$
Jawab:
$\begin{array}{l}
\int {\sqrt {{a^2} - {x^2}} } dx = \frac{1}{2}x\sqrt {{a^2} - {x^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\int {\sqrt {4 - {x^2}} } dx = \int {\sqrt {{2^2} - {x^2}} } dx \\
= \frac{1}{2}x\sqrt {{2^2} - {x^2}} + \frac{1}{2}{2^2}{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
= \frac{1}{2}x\sqrt {4 - {x^2}} + \frac{1}{2}.4{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
\int {\sqrt {4 - {x^2}} } dx = \frac{1}{2}x\sqrt {4 - {x^2}} + 2{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
\end{array}$
\int {\sqrt {{a^2} - {x^2}} } dx = \frac{1}{2}x\sqrt {{a^2} - {x^2}} + \frac{1}{2}{a^2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \\
\int {\sqrt {4 - {x^2}} } dx = \int {\sqrt {{2^2} - {x^2}} } dx \\
= \frac{1}{2}x\sqrt {{2^2} - {x^2}} + \frac{1}{2}{2^2}{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
= \frac{1}{2}x\sqrt {4 - {x^2}} + \frac{1}{2}.4{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
\int {\sqrt {4 - {x^2}} } dx = \frac{1}{2}x\sqrt {4 - {x^2}} + 2{\sin ^{ - 1}}\left( {\frac{x}{2}} \right) + C \\
\end{array}$
Semoga bermanfaat
Post a Comment for "Integral dengan Substitusi Trigonometri Part 1"
Mohon untuk memberikan komentar yang baik dan membangun