Elipsoida adalah bentuk tiga dimensi dari bangun datar elips. Secara umum persamaan elipsoida pada dimensi tiga adalah sebagai berikut:
\[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\]
dimana:
$a$, $b$, dan $c$ adalah sumbu-sumbu pada elipsoida.
Dengan melihat nilai dari $a$, $b$, dan $c$, bangun ruang elipsoida terdiri dari 4 jenis yang berbeda yaitu :
1. Elipsoida triaksial, jika $a > b > c$.
2. Elipsoida oblat, jika $a = b > c$.
3. Elipsoida prolat, jika $a = b < c$.
4. Bola, jika $a = b = c$.
Dari pembagian jenis di atas kita tahu bahwa ternyata bola merupakan bagian dari elipsoida.
Mencari Rumus Volume Elipsoida Prolat
Pada elipsoda prolat berlaku $a = b < c$. Secara sekilas bentuknya menyerupai telur atau bola sepakbola USA.
Untuk menentukan volume kita akan menggunakan rumus volume benda putar. Dalam hal ini adalah elips yang diputar 360o terhadap sumbu X.
Persamaan elips adalah
\[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\]
Persamaan tersebut jika dinyatakan dalam variabel $x$ menjadi
$\begin{array}{*{20}{c}}
{\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1} \\
{ \Leftrightarrow {b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}} \\
{ \Leftrightarrow {a^2}{y^2} = {a^2}{b^2} - {b^2}{x^2}} \\
{ \Leftrightarrow {y^2} = \frac{{{a^2}{b^2} - {b^2}{x^2}}}{{{a^2}}}} \\
{ \Leftrightarrow {y^2} = {b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} \\
{ \Leftrightarrow y = \pm \sqrt {{b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} } \\
\end{array}$
$\begin{array}{*{20}{c}}
{ \Leftrightarrow {y_1} = \sqrt {{b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} \vee \Leftrightarrow {y_2} = - \sqrt {{b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} } \\
\end{array}$
Dari hasil terakhir terdapat dua persamaan yang bisa kita gunakan, dengan memilih persamaan yang pertama untuk batas bawah -a dan batas atas a, diperoleh
$\begin{array}{*{20}{c}}
{V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}} dx} \\
{V = \pi \int\limits_{ - a}^a {{y^2}dx} } \\
{V = \pi \int\limits_{ - a}^a {{{\left[ {\sqrt {{b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} } \right]}^2}} dx} \\
{V = \pi \int\limits_{ - a}^a {\left( {{b^2} - \frac{{{b^2}}}{{{a^2}}}{x^2}} \right)} dx} \\
{V = \pi \left[ {{b^2}x - \frac{{{b^2}}}{{3{a^2}}}{x^3}} \right]_{ - a}^a} \\
{V = \pi \left[ {\left( {{b^2}.a - \frac{{{b^2}}}{{3{a^2}}}{a^3}} \right) - \left( {{b^2}. - a - \frac{{{b^2}}}{{3{a^2}}}{{\left( { - a} \right)}^3}} \right)} \right]} \\
{V = \pi \left[ {\left( {a{b^2} - \frac{1}{3}a{b^2}} \right) - \left( { - a{b^2} + \frac{1}{3}a{b^2}} \right)} \right]} \\
{V = \pi \left[ {a{b^2} - \frac{1}{3}a{b^2} + a{b^2} - \frac{1}{3}a{b^2}} \right]} \\
{V = \pi \left[ {\frac{4}{3}a{b^2}} \right]} \\
{V = \frac{4}{3}\pi a{b^2}} \\
\end{array}$
Dari hasil terakhir dapat disimpulkan bahwa volume elipsoida prolat dengan sumbu mayor a dan sumbu minor b adalah
\[\boxed{{V = \frac{4}{3}\pi a{b^2}}}\]
Semoga bermanfaat.
nurhamim86
A Mathematics Teacher who also likes the IT world.
Pada rumus volume elipsoid prolat mengapa tidak mengandung unsur sumbu c ?
ReplyDelete