Skip to content Skip to sidebar Skip to footer

Limit Fungsi Trigonometri

Dalam beberapa kasus, penyelesaian limit fungsi trigonometri hampir sama dengan penyelesaian limit fungsi aljabar, misalnya dengan metode substitusi langsung atau dengan metode pemfaktoran. Rumus-rumus trigonometri dan teorema limit dapat membantu untuk menyelesaikan limit-limit fungsi trigonometri.

Metode Substitusi Langsung

Contoh

Hitunglah nilai limit fungsi-fungsi trigonometri berikut ini.

  1. $\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \sin x$
  2. $\mathop {\lim }\limits_{x \to 0} \left( {\cos 2x - 1} \right)$
  3. $\mathop {\lim }\limits_{x \to 0} \left( {{{\sin }^2}x - {{\cos }^2}x} \right)$

Jawab

  1. $\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \sin x = \sin \frac{\pi }{2} = 1$

    Jadi, $\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \sin x = 1$

  2. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \left( {\cos 2x - 1} \right) &= \cos 2.0 - 1\\ &= \cos 0 - 1\\ &= 1 - 1\\ &= 0 \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \left( {\cos 2x - 1} \right) = 0$

  3. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \left( {{{\sin }^2}x - {{\cos }^2}x} \right) &= {\sin ^2}0 - {\cos ^2}0\\ &= {0^2} - {1^2}\\ &= - 1 \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \left( {{{\sin }^2}x - {{\cos }^2}x} \right) = - 1$

Metode Pemfaktoran

Contoh

Hitunglah nilai limit fungsi-fungsi trigonometri berikut ini.

  1. $\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{\sin x}}$
  2. $\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos 2x}}{{\sin x}}$

Jawab

Dengan menggunakan metode substitusi langsung diperoleh:

  • $\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{\sin x}} = \frac{{\sin 2.0}}{{\sin 0}} = \frac{0}{0}$
  • $\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos 2x}}{{\sin x}} = \frac{{1 - \cos 2.0}}{{\sin 0}} = \frac{{1 - 1}}{0} = \frac{0}{0}$

Dengan substitusi langsung diperoleh nilai $\frac{0}{0}$, yaitu bentuk tak tentu. Oleh karena itu, perlu dilakukan upaya lain yaitu sebagai berikut:

  1. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{\sin x}} &= \mathop {\lim }\limits_{x \to 0} \frac{{2\cancel{{\sin x}}\cos x}}{{\cancel{{\sin x}}}}\\ &= \mathop {\lim }\limits_{x \to 0} 2\cos x\\ &= 2\cos 0\\ &= 2.1\\ &= 2 \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{\sin x}} = 2$.

  2. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos 2x}}{{\sin x}} &= \mathop {\lim }\limits_{x \to 0} \frac{{1 - \left( {1 - 2{{\sin }^2}x} \right)}}{{\sin x}}\\ &= \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sin }^2}x}}{{\sin x}}\\ &= \mathop {\lim }\limits_{x \to 0} 2\sin x\\ &= 2\sin 0\\ &= 2.0\\ &= 0 \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos 2x}}{{\sin x}} = 0$.

Rumus-Rumus Limit Fungsi Trigonometri

Limit fungsi trigonometri dapat pula diselesaikan dengan menggunakan rumus. Rumus-rumus limit fungsi trigonometri yang dimaksud adalah sebagai berikut:

\[\boxed{\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sin x}} = 1\\ \mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\tan x}} = 1 \end{array}}\]

Rumus-rumus limit fungsi trigonometri di atas dapat diperluas. Misal $u$ adalah fungsi dari $x$ dan jika $x \to 0$ maka $u \to 0$, rumus-rumus tersebut dapat ditulis sebagai berikut:

\[\boxed{\begin{array}{l} \mathop {\lim }\limits_{u \to 0} \frac{{\sin u}}{u} = \mathop {\lim }\limits_{u \to 0} \frac{u}{{\sin u}} = 1\\ \mathop {\lim }\limits_{u \to 0} \frac{{\tan u}}{u} = \mathop {\lim }\limits_{u \to 0} \frac{u}{{\tan u}} = 1 \end{array}}\]

Contoh

Hitunglah nilai limit fungsi-fungsi trigonometri berikut ini.

  1. $\mathop {\lim }\limits_{x \to 0} \frac{{\sin 4x}}{{2x}}$
  2. $\mathop {\lim }\limits_{x \to 0} \frac{{6x}}{{x + \sin 3x}}$

Jawab

  1. Misal $u = 4x \to x = \frac{1}{4}u$. Jika $x \to 0$ maka $u \to 0$, sehingga
  2. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{\sin 4x}}{{2x}} &= \mathop {\lim }\limits_{u \to 0} \frac{{\sin u}}{{2\left( {\frac{1}{4}u} \right)}}\\ &= \mathop {\lim }\limits_{u \to 0} \frac{{\sin u}}{{\frac{1}{2}u}}\\ &= \mathop {\lim }\limits_{u \to 0} 2\frac{{\sin u}}{u}\\ &= 2\mathop {\lim }\limits_{u \to 0} \frac{{\sin u}}{u}\\ &= 2.1\\ &= 2 \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \frac{{\sin 4x}}{{2x}} = 2$.

  3. $\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{6x}}{{x + \sin 3x}} &= \mathop {\lim }\limits_{x \to 0} \frac{1}{{\frac{{x + \sin 3x}}{{6x}}}}\\ &= \frac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \frac{{x + \sin 3x}}{{6x}}}}\\ &= \frac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \left( {\frac{x}{{6x}} + \frac{{\sin 3x}}{{6x}}} \right)}}\\ &= \frac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \frac{1}{6} + \mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{2.3x}}}}\\ &= \frac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \frac{1}{6} + \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{3x}}}}\\ &= \frac{1}{{\frac{1}{6} + \frac{1}{2}.1}}\\ &= \frac{1}{{\frac{4}{6}}}\\ &= \frac{6}{4}\\ &= 1\frac{1}{2} \end{array}$

    Jadi, $\mathop {\lim }\limits_{x \to 0} \frac{{6x}}{{x + \sin 3x}} = 1\frac{1}{2}$.

Previous
Prev Post
Next
Next Post
nurhamim86
nurhamim86 A Mathematics Teacher who also likes the IT world.

Post a Comment for "Limit Fungsi Trigonometri"