Partial Integral
The Definition of Partial Integral
Suppose that the functions $u = u\left( x \right)$ and $v = v\left( x \right)$. The product of the two functions is determined by $y = uv$. Based on the rules for the derivative of the product of the functions, the following relationship is obtained:
$\begin{array}{l} u = u\left( x \right)\\ y = uv\\ y' = u'v + uv'\\ \frac{{dy}}{{dx}} = \frac{{du}}{{dx}}v + u\frac{{dv}}{{dx}}\\ dy = vdu + udv \end{array}$By applying the integration operation to each side of the equation, we get:
$\begin{array}{l} \int {dy} = \int {\left( {vdu + udv} \right)} \\ \Leftrightarrow y = \int {vdu + \int {udv} } \\ \Leftrightarrow uv = \int {vdu + \int {udv} } \\ \Leftrightarrow \int {udv} = uv - \int {vdu} \end{array}$Suppose that $u\left( x \right)$ and $v\left( x \right)$ are each function in the variable $x$, then the integration of $\int {udv} $ is determined by the relation :
\[\boxed{\int {udv} = uv - \int {vdu} }\]
The above relation shows that the integration of $\int {udv} $ can become the integration of $\int {vdu} $, and vice versa. The success or failure of the integration using the partial integral formula is determined by two things as follows:
- Selects the $dv$ portion so that $v$ can be immediately determined via the $v = \int {dv} $ relationship.
- $\int {vdu} $ should be easier to solve than $\int {udv} $
Example
Using the partial integral formula, determine the following integrals
- $\int {x\sin 2xdx} $
- $\int {x\cos 3xdx} $
- $\int {{x^2}} \sqrt {x + 6} dx$
- $\int {\left( {{x^2} - x} \right)} \sin 3xdx$
- $\int {{e^x}} \cos xdx$
Answer
- $\int {x\sin 2xdx} $
- $\int {x\cos 3xdx} $
- The solution for $\int {{x^2}} \sqrt {x + 6} dx$ can use the following table:
- The solution for $\int {\left( {{x^2} - x} \right)} \sin 3xdx$ can use the following table:
- $\int {{e^x}} \cos xdx$
So, $\int {x\sin 2xdx} = - \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C$.
So, $\int {x\cos 3xdx} = \frac{1}{3}x\sin 3x - \frac{1}{9}\cos 3x + C$.
Sign | Derivatives | Integral |
---|---|---|
$\textcolor{red}{+}$ | $\textcolor{red}{{x^2}}$ | ${\left( {x + 6} \right)^{\frac{1}{2}}}$ |
$\textcolor{green}{-}$ | $\textcolor{green}{2x}$ | $\textcolor{red}{\frac{2}{3}{\left( {x + 6} \right)^{\frac{3}{2}}}}$ |
$\textcolor{blue}{+}$ | $\textcolor{blue}{2}$ | $\textcolor{green}{\frac{4}{{15}}{\left( {x + 6} \right)^{\frac{5}{2}}}}$ |
$-$ | $0$ | $\textcolor{blue}{\frac{8}{{105}}{\left( {x + 6} \right)^{\frac{7}{2}}}}$ |
From the table above, we get:
So, $\int {{x^2}\sqrt {x + 6} } dx = \frac{2}{3}{x^2}\left( {x + 6} \right)\sqrt {x + 6} - \frac{8}{{15}}x{\left( {x + 6} \right)^2}\sqrt {x + 6} + \frac{{16}}{{105 }}{\left( {x + 6} \right)^3}\sqrt {x + 6} + C$.
Sign | Derivatives | Integral |
---|---|---|
$\textcolor{red}{+}$ | $\textcolor{red}{{x^2} - x}$ | $\sin 3x$ |
$\textcolor{green}{-}$ | $\textcolor{green}{2x - 1}$ | $\textcolor{red}{ - \frac{1}{3}\cos 3x}$ |
$\textcolor{blue}{+}$ | $\textcolor{blue}{2}$ | $\textcolor{green}{ - \frac{1}{3}.\frac{1}{3}\sin 3x = - \frac{1}{9}\sin 3x}$ |
$-$ | $0$ | $\textcolor{blue}{ - \frac{1}{9}. - \frac{1}{3}\cos 3x = \frac{1}{{27}}\cos 3x}$ |
From the table above, we get:
So, $\int {\left( {{x^2} - x} \right)} \sin 3xdx = - \frac{1}{3}\left( {{x^2} - x} \right)\cos 3x + \frac{1}{9}\left( {2x - 1} \right)\sin 3x + \frac{2}{{27}}\cos 3x + C$.
So $\int {{e^x}} \cos xdx = \frac{{{e^x}\sin x + {e^x}\cos x}}{2} + C$.
Post a Comment for "Partial Integral"
Mohon untuk memberikan komentar yang baik dan membangun