Teorema Limit dan Bilangan Euler
Teorema Limit
Sifat-sifat limit fungsi dapat dirangkum dalam Teorema Limit sebagai berikut.
- Jika $f\left( x \right) = k$ maka $\mathop {\lim }\limits_{x \to a} f\left( x \right) = k$, untuk setiap $k$ konstanta dan $a$ bilangan real.
- Jika $f\left( x \right) = x$ maka $\mathop {\lim }\limits_{x \to a} f\left( x \right) = a$, untuk setiap $a$ bilangan real.
- $\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \mathop {\lim }\limits_{x \to a} f\left( x \right) \pm \mathop {\lim }\limits_{x \to a} g\left( x \right)$
- Jika $k$ suatu konstanta maka $\mathop {\lim }\limits_{x \to a} k.f\left( x \right) = k\mathop {\lim }\limits_{x \to a} f\left( x \right)$
- $\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right).g\left( x \right)} \right\} = \mathop {\lim }\limits_{x \to a} f\left( x \right).\mathop {\lim }\limits_{x \to a} g\left( x \right)$
- $\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}$ dengan $\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0$.
- $\mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^2} = {\left[ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right]^2}$
- $\mathop {\lim }\limits_{x \to a} \sqrt[n]{{f\left( x \right)}} = \sqrt[n]{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}$ dengan $\mathop {\lim }\limits_{x \to a} f\left( x \right) \ge 0$ untuk $n$ genap.
Contoh
Hitunglah nilai limit fungsi berikut ini.
- $\mathop {\lim }\limits_{x \to 1} \left( {2{x^2} - 3x + 5} \right)$
- $\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} $
Jawab
$\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \left( {2{x^2} - 3x + 5} \right) &= \mathop {\lim }\limits_{x \to 1} 2{x^2} - \mathop {\lim }\limits_{x \to 1} 3x + \mathop {\lim }\limits_{x \to 1} 5\\
&= 2\mathop {\lim }\limits_{x \to 1} {x^2} - 2\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 5\\
&= 2{\left[ {\mathop {\lim }\limits_{x \to 1} x} \right]^2} - 2\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 5\\
&= {2.1^2} - 2.1 + 5\\
&= 2 - 2 + 5\\
&= 5
\end{array}$
Jadi, $\mathop {\lim }\limits_{x \to 1} \left( {2{x^2} - 3x + 5} \right) = 5$.
$\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} &= \frac{{\mathop {\lim }\limits_{x \to 0} \sqrt {{x^2} + 4} }}{{\mathop {\lim \sqrt {x + 4} }\limits_{x \to 0} }}\\ &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( {{x^2} + 4} \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right)} }}\\ &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to 0} \mathop {\left( {{x^2}} \right) + \lim }\limits_{x \to 0} \left( 4 \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( x \right)\mathop {\lim }\limits_{x \to 0} \left( 4 \right)} }}\\ &= \frac{{\sqrt {{{\left[ {\mathop {\lim x}\limits_{x \to 0} } \right]}^2}\mathop { + \lim }\limits_{x \to 0} \left( 4 \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( x \right) + \mathop {\lim }\limits_{x \to 0} \left( 4 \right)} }}\\ &= \frac{{\sqrt {{0^2} + 4} }}{{\sqrt {0 + 4} }}\\ &= \frac{{\sqrt 4 }}{{\sqrt 4 }}\\ &= \frac{2}{2}\\ &= 1 \end{array}$Jadi, $\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} = 1$.
Bilangan Euler
Bilangan Euler $e=2,718281828459...$ adalah sebuah bilangan irrasional yang diperoleh dari suatu bentuk limit untuk peubah $x$ mendekati tak hingga. Bilangan $e$ dirumuskan sebagai:
\[\begin{array}{l} \boxed{\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{x}} \right)^x} = e}\\ atau\\ \boxed{\mathop {\lim }\limits_{x \to \infty } {\left( {1 - \frac{1}{x}} \right)^{ - x}} = e} \end{array}\]Contoh
Hitunglah nilai limit fungsi berikut ini.
- $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x}$
- $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{{{x^2}}}} \right)^{{x^2} - 4x}}$
Jawab
-
$\begin{array}{l}
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x} = \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^{\frac{x}{3}.3}}\\
= \mathop {\lim }\limits_{x \to \infty } {\left\{ {{{\left( {1 + \frac{3}{x}} \right)}^{\frac{x}{3}}}} \right\}^3}\\
= \mathop {\lim }\limits_{x \to \infty } {\left\{ {{{\left( {1 + \frac{1}{{\frac{x}{3}}}} \right)}^{\frac{x}{3}}}} \right\}^3}\\
= {e^3}
\end{array}$
Jadi, $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x} = {e^3}$.
$\begin{array}{l}
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{{{x^2}}}} \right)^{{x^2} - 4x}} &= \mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}}}}}{{{{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{4x}}}}\\
&= \frac{{\mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{4x}}}}\\
&= \frac{{\mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}.\frac{4}{x}}}}}\\
&= \frac{{\mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } {{\left\{ {{{\left( {1 + \frac{1}{{{x^2}}}} \right)}^{{x^2}}}} \right\}}^{\frac{4}{x}}}}}\\
&= \frac{e}{{{e^0}}}\\
&= \frac{e}{1} = e
\end{array}$
Jadi, $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{{{x^2}}}} \right)^{{x^2} - 4x}} = e$.
Post a Comment for "Teorema Limit dan Bilangan Euler"
Mohon untuk memberikan komentar yang baik dan membangun